85 research outputs found

    PEY25 HEALTH-RELATED QUALITY-OF-LIFE AND UTILITY IN DUTCH GLAUCOMA PATIENTS

    Get PDF

    Evolution of Reproductive Morphology in Leaf Endophytes

    Get PDF
    The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Body mass index and outcome after revascularization for symptomatic carotid artery stenosis.

    Get PDF
    To determine whether the obesity paradox exists in patients who undergo carotid artery stenting (CAS) or carotid endarterectomy (CEA) for symptomatic carotid artery stenosis. We combined individual patient data from 2 randomized trials (Endarterectomy vs Angioplasty in Patients with Symptomatic Severe Carotid Stenosis and Stent-Protected Angioplasty vs Carotid Endarterectomy) and 3 centers in a third trial (International Carotid Stenting Study). Baseline body mass index (BMI) was available for 1,969 patients and classified into 4 groups: <20, 20-<25, 25-<30, and ≥30 kg/m(2). Primary outcome was stroke or death, investigated separately for the periprocedural and postprocedural period (≤120 days/>120 days after randomization). This outcome was compared between different BMI strata in CAS and CEA patients separately, and in the total group. We performed intention-to-treat multivariable Cox regression analyses. Median follow-up was 2.0 years. Stroke or death occurred in 159 patients in the periprocedural (cumulative risk 8.1%) and in 270 patients in the postprocedural period (rate 4.8/100 person-years). BMI did not affect periprocedural risk of stroke or death for patients assigned to CAS (ptrend = 0.39) or CEA (ptrend = 0.77) or for the total group (ptrend = 0.48). Within the total group, patients with BMI 25-<30 had lower postprocedural risk of stroke or death than patients with BMI 20-<25 (BMI 25-<30 vs BMI 20-<25; hazard ratio 0.72; 95% confidence interval 0.55-0.94). BMI is not associated with periprocedural risk of stroke or death; however, BMI 25-<30 is associated with lower postprocedural risk than BMI 20-<25. These observations were similar for CAS and CEA

    (R)-[11C]Verapamil PET studies to assess changes in P-glycoprotein expression and functionality in rat blood-brain barrier after exposure to kainate-induced status epilepticus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased functionality of efflux transporters at the blood-brain barrier may contribute to decreased drug concentrations at the target site in CNS diseases like epilepsy. In the rat, pharmacoresistant epilepsy can be mimicked by inducing status epilepticus by intraperitoneal injection of kainate, which leads to development of spontaneous seizures after 3 weeks to 3 months. The aim of this study was to investigate potential changes in P-glycoprotein (P-gp) expression and functionality at an early stage after induction of status epilepticus by kainate.</p> <p>Methods</p> <p><it>(R)</it>-[<sup>11</sup>C]verapamil, which is currently the most frequently used positron emission tomography (PET) ligand for determining P-gp functionality at the blood-brain barrier, was used in kainate and saline (control) treated rats, at 7 days after treatment. To investigate the effect of P-gp on <it>(R)</it>-[<sup>11</sup>C]verapamil brain distribution, both groups were studied without or with co-administration of the P-gp inhibitor tariquidar. P-gp expression was determined using immunohistochemistry in post mortem brains. <it>(R)</it>-[<sup>11</sup>C]verapamil kinetics were analyzed with approaches common in PET research (Logan analysis, and compartmental modelling of individual profiles) as well as by population mixed effects modelling (NONMEM).</p> <p>Results</p> <p>All data analysis approaches indicated only modest differences in brain distribution of <it>(R)</it>-[<sup>11</sup>C]verapamil between saline and kainate treated rats, while tariquidar treatment in both groups resulted in a more than 10-fold increase. NONMEM provided most precise parameter estimates. P-gp expression was found to be similar for kainate and saline treated rats.</p> <p>Conclusions</p> <p>P-gp expression and functionality does not seem to change at early stage after induction of anticipated pharmacoresistant epilepsy by kainate.</p

    Biodiversity, Disparity and Evolvability

    Get PDF
    A key problem in conservation biology is how to measure biological diversity. Taxic diversity (the number of species in a community or in a local biota) is not necessarily the most important aspect, if what most matters is to evaluate how the loss of the different species may impact on the future of the surviving species and communities. Alternative approaches focus on functional diversity (a measure of the distribution of the species among the different 'jobs' in the ecosystem), others on morphological disparity, still others on phylogenetic diversity. There are three major reasons to prioritize the survival of species which provide the largest contributions to the overall phylogenetic diversity. First, evolutionarily isolated lineages are frequently characterized by unique traits. Second, conserving phylogenetically diverse sets of taxa is valuable because it conserves some sort of trait diversity, itself important in so far as it helps maintain ecosystem functioning, although a strict relationships between phylogenetic diversity and functional diversity cannot be taken for granted. Third, in this way we maximize the "evolutionary potential" depending on the evolvability of the survivors. This suggests an approach to conservation problems focussed on evolvability, robustness and phenotypic plasticity of developmental systems in the face of natural selection: in other terms, an approach based on evolutionary developmental biology

    Is evolvability evolvable?

    Get PDF
    In recent years, biologists have increasingly been asking whether the ability to evolve — the evolvability — of biological systems, itself evolves, and whether this phenomenon is the result of natural selection or a by-product of other evolutionary processes. The concept of evolvability, and the increasing theoretical and empirical literature that refers to it, may constitute one of several pillars on which an extended evolutionary synthesis will take shape during the next few years, although much work remains to be done on how evolvability comes about
    corecore